Nonparametric regression for functional data: automatic smoothing parameter selection
نویسندگان
چکیده
We study regression estimation when the explanatory variable is functional. Nonparametric estimates of the regression operator have been recently introduced. They depend on a smoothing factor which controls its behavior, and the aim of our work is to construct some data-driven criterion for choosing this smoothing parameter. The criterion can be formulated in terms of a functional version of cross-validation ideas. Under mild assumptions on the unknown regression operator, it is seen that this rule is asymptotically optimal. As by-products of this result, we state some asymptotic equivalences for several measures of accuracy for nonparametric estimate of the regression operator. We also present general inequalities for bounding moments of random sums involving functional variables. Finally, a short simulation study is carried out to illustrate the behavior of our method for finite samples.
منابع مشابه
Automatic Smoothing and Variable Selection via Regularization
This thesis focuses on developing computational methods and the general theory of automatic smoothing and variable selection via regularization. Methods of regularization are a commonly used technique to get stable solution to ill-posed problems such as nonparametric regression and classification. In recent years, methods of regularization have also been successfully introduced to address a cla...
متن کاملAutomatic Generalized Nonparametric Regression via Maximum Likelihood
A relatively recent development in nonparametric regression is the representation of spline-based smoothers as mixed model fits. In particular, generalized nonparametric regression (e.g. smoothingwith a binary response) corresponds to fitting a generalized linear mixedmodel. Automation, or data-driven smoothing parameter selection, can be achieved via (restricted) maximum likelihood estimation ...
متن کاملHow Far Are Automatically Chosen Regression Smoothing Parameters from Their Optimum?
· ABSTRACT In the setting of nonparametric curve estimation the problem of smoothing parameter selection is addressed. The deviation between the the squared error optimal smoothing parameter and the smoothing parameters provided by a number of automatic selection methods is studied both theoretically and by simUlation. The theoretical results include a central limit theorem which shows both the...
متن کاملVariable data driven bandwidth choice in nonparametric quantile regression
The choice of a smoothing parameter or bandwidth is crucial when applying nonparametric regression estimators. In nonparametric mean regression various methods for bandwidth selection exists. But in nonparametric quantile regression bandwidth choice is still an unsolved problem. In this paper a selection procedure for local varying bandwidths based on the asymptotic mean squared error (MSE) of ...
متن کاملSmoothing Parameter Selection Methods for Nonparametric Regression with Spatially Correlated Errors
Nonparametric regression makes it possible to visualize and describe spatial trends without requiring the specification of a parametric model, but appropriate choice of smoothing parameters is important to avoid misinterpreting the nonparametric fits. Because spatial data are often correlated, currently available data-driven smoothing parameter selection methods often fail to provide useful res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006